Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский государственный университет имени М.В. Ломоносова филиал МГУ в г. Севастополе факультет компьютерной математики кафедра прикладной математики

УТВЕРЖДЕНО
на 2011 - 2022 учебный год
Методическим советом Филиела
Протокол № В от «28 » Об 2022 г.

Заместитель даректора по учебной работе

Филиал Московского

Филиал Московского

В гободе Севестополе

В гободе Севестополе

20 21 г.

утверждено Абочая программа дисциплины (модуля):

Методическим советом Филиала Протокол № 9 от «28» 06 2023

ПД ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Ваместитель изректоря по учебной работе

код и наименование дисциплины (модуля)

Aspentiture value -

Уровень высшего образования:

бакалавриат

Направление подготовки:

38.03.01 Экономика

(код и название направления/специальности)

Направленность (профиль) ОПОП:

общий

(если дисциплина (модуль) относится к вариативной части программы)

Форма обучения

очная

очная, очно-заочная

Рабочая программа рассмотрена на заседании кафедры программирования протокол № 2 от «10 » шом 2021 г. Заведующий кафедрой прикладной

математики

(полписк) (С. И. Гуро

Рабочая программа дисциплины (модуля) разработана в соответствии с требованиями ФГОС ВО по направлению подготовки 38.03.01 «Экономика» (уровень бакалавриата), утвержден приказом Министерства образования и науки РФ от 12 августа 2020 года № 954

Год (годы) приема на обучение 2021

 $\kappa ypc - 3$

семестр – 6

зачетных единиц 2

академических часов 51, в т.ч.:

лекций – 17 часов

практических занятий – 34 часов

самостоятельная работа студентов – 21 час

Формы промежуточной аттестации:

зачет

Форма итоговой аттестации:

нет

1. Место дисциплины (модуля) в структуре ОПОП ВО

Предмет дисциплины — обыкновенные дифференциальные уравнения и системы уравнений, уравнения первого и второго порядков, теория устойчивости решений систем, нахождения решений задачи Коши.

Цель освоения дисциплины «Дифференциальные уравнения» является:

ознакомление с основными понятиями теории дифференциальных уравнений, методами решения обыкновенных дифференциальных уравнений. Изучение теории устойчивости нелинейных динамических систем, краевых задач и методов их решения, а также квазилинейных уравнений в частных производных первого порядка. Ознакомление с постановкой и методами решения задачи Коши.

Основные задачи дисииплины:

- дать фундаментальную подготовку в решении дифференциальных уравнений, уменииприменять их в решении прикладных задач;
- научить исследовать устойчивость динамических систем, ставить и решать задачи;
- научить применению полученных теоретических знаний по дифференциальным уравнениям к задачам математического моделирования.

Дисциплина «Дифференциальные уравнения» входит в вариативную часть ОС МГУ по направлению подготовки 38.03.01 «Экономика» (бакалавр). Логически и содержательно — методически данная дисциплина связана с базовыми курсами профессионального цикла «Стратегическое управление предприятием», «Управление потенциалом предприятия», «Экономическая диагностика», «Микроэкономика», «Макроэкономика».

Для успешного освоения дисциплины «Дифференциальные уравнения» студент должен обладать основами знаний по математическому анализу, линейной алгебре, в частности уметь находить собственные значения и собственные векторы матрицы, владеть приёмами интегрирования и т.д.

3. Результаты обучения по дисциплине (модулю), соотнесенные с требуемыми компетенциями выпускников

Планируемые результаты обучения по дисциплине:

знать:

- основные виды дифференциальных уравнений и области их применения;
- основные понятия и свойства дифференциальных уравнений;
- применение математического аппарата при исследовании дифференциальных уравнений.

уметь:

- применять эти базовые знания при решении типовых задач;
- самостоятельно работать с математической литературой;
- логически и алгоритмически мыслить, строго излагая свои мысли

владеть:

• навыками решения задачи и интерпретации результатов в терминах прикладной области;

• основами математического аппарата, необходимого для решения теоретических и практических задач дифференциальных уравнений.

4. Формат обучения контактный

- **5. Объем дисциплины (модуля)** составляет 23.е., в том числе 51 академических часов, отведенных на контактную работу обучающихся с преподавателем, 21 академический час на самостоятельную работу обучающихся.
- 6. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий
- 6.1. Структура дисциплины (модуля) по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий

Наименование разделов и тем дисциплины (модуля), Форма промежуточно й аттестации по дисциплине (модулю)	и тем обучания обучания), Контактная работа во взаимодействии с преподавателем) виды контактной ации работы, академические		(работа во работа взаимодействии с преподавателем) Виды контактной работы, академические академические		Всего академических часов	Форма текущего контроля успеваемости (наименование)
	Занятия лекционного типа*	Занятия семинарского типа*		Всего ак	Форма т успеваем	
Раздел 1. Дифференциаль ные уравнения первого порядка	14	6	10	30	Контрольная работа	
Раздел 2. Дифференциаль ные уравнения порядка выше первого	12	6	4	22	Опрос у доски	
Раздел 3. Системы линейных дифференциаль ных уравнений	4	3	4	11	Контрольная работа	
Раздел 4. Теория	4	2	3	9	Опрос у доски	

устойчивости					
					Домашнее задание/инди видуальна работа
Итого	34	17	21	72	

6.2. Содержание разделов (тем) дисциплины

№ п/п	Наименование разделов (тем) дисциплины	Содержание разделов (тем) дисциплин
1.	Раздел 1. Дифференциальные уравнения первого порядка	Понятие дифференциальных уравнений. Задачи, приводящие к обыкновенным дифференциальным уравнениям. Уравнение колебаний. Уравнение радиоактивного распада. Задачи Коши с начальными данными и краевые задачи.
		Теорема существования и единственности решения задачи Коши для уравнения первого порядка, разрешенного относительно производной. Непрерывная зависимость от параметра и начальных условий. Метод изоклин решения дифференциальных уравнений.
		Общее, частное и особое решение. № 51-60, 88,89,91,92,100 — задачник Филиппова А.Ф. [4]. Однородные дифференциальные уравнения. №101-106, 113-120.
		Линейные уравнения первого порядка. Уравнение Бернулли. № 136-140, 146-148, 150,151-152. Уравнение в полных дифференциалах. Общий интеграл уравнения первого порядка.
		№ 186-188, 195-200 Контрольная работа №1 по теме занятий 1 - 4.
2.	Раздел 2. Дифференциальные уравнения порядка выше первого	Дифференциальные уравнения п-го порядка. Методы понижения порядка уравнения. Линейное однородное дифференциальное уравнение п-го порядка. Фундаментальная система решений. Определитель Вронского. № 421-425, 434-437, 447, 455-458, 460-466, 475-480.
		Линейное неоднородное дифференциальное уравнение. Метод вариации постоянных нахождения частного решения неоднородного уравнения № 511-520.

		Метод неопределённых коэффициентов решения неоднородного уравнения с постоянными коэффициентами. Примеры
3.	Раздел 3. Системы линейных дифференциальных уравнений	№ 533-539, 544-547, 575-579. Линейные однородные системы. Фундаментальная система решений. Определитель Вронского. Общее решение линейной системы. № 786-791, 796-802
		Нахождение фундаментальной системы решений для линейной системы с постоянными коэффициентами. Характеристическое уравнение. Случай некратных корней характеристического
		уравнения. Примеры. № 792, 804-808 Построение фундаментальной системы решений для системы уравнений с постоянными коэффициентами в случае кратных корней характеристического уравнения. № 826-833
		Метод изоклин решения дифференциальных уравнений. № 1-5 *. Метод разделения переменных при решении дифференциальных уравнений первого порядка, разрешённых относительно
4.	Раздел 4. Теория устойчивости	производной. № 846-848. Контрольная работа № 2 по теме занятий. Основные понятия теории устойчивости. Устойчивость решения линейной системы.
		Точки покоя. Устойчивость по первому приближению. (первый метод Ляпунова). Примеры№ 899-904, 915-919 Исследование траекторий в окрестности точки покоя. Фазовая плоскость. Фазовый портрет системы. № 1021-1026, 1001, 1002

7. Фонд оценочных средств (ФОС) для оценивания результатов обучения по дисциплине (модулю)

На лекциях – консультации, устный опрос, оценка конспекта.

В конспекте каждый студент помимо материалов лекций отражает результат самостоятельного изучения литературы.

На практических (семинарских) занятиях после изучения типовых задач по темам курса проводится контрольная работа по индивидуальным практическим заданиям. Данные по всем заданиям сохраняются в профиле студента до итогового зачета

7.1. Типовые контрольные задания или иные материалы для проведения текущего контроля успеваемости.

Типичные задания контрольных работ

Контрольная работа № 1

1.
$$y' = 3\sqrt[3]{y^2}$$
; $y(2)=0$

2.
$$e^{-y}dx - (2y + xe^{-y})dy = 0$$

3.
$$(x^2 + y^2)y' = 2xy$$

3.
$$(x^2 + y^2)y' = 2xy$$
 4. $ydx - xdy = 2x^3 tg \frac{y}{x} dx$

5.
$$(x+1)(y'+y^2) = -y$$

Контрольная работа № 2

1.
$$y' - y' = 0$$

1.
$$y'-y'=0$$
 2.. $y''-9y=e^{3x}\cos x$

3.
$$yy'' + y'^2 = 1$$

4.
$$\begin{cases} x = x + 2y \\ y = x - 5\sin t \end{cases}$$

5.
$$\begin{cases} x = 2x + y \\ y = 3x + 4y \end{cases}$$

Форма итогового контроля – зачет.

Вопросы к зачету

- 1. Понятие дифференциальных уравнений. Физические и экономические задачи, приводящие к обыкновенным дифференциальным уравнениям. Теорема существования и единственности. Общее, частное и особое решение.
- 2. Дифференциальные уравнения, интегрируемые в квадратурах. Уравнение с разделяющимися переменными.
- 3. Однородное уравнение.
- 4. Линейное уравнение. Метод вариации постоянных.
- 5. Уравнение Бернулли.
- 6. Уравнение в полных дифференциалах. Общий интеграл уравнения первого порядка
- 7. Дифференциальные уравнения порядка выше первого. Методы понижения порядка уравнения.
- 8. Линейное однородное дифференциальное уравнение n-го порядка. Фундаментальная система решений. Определитель Вронского.
- 9. Линейное неоднородное дифференциальное уравнение. Метод вариации постоянных нахождения частного решения неоднородного уравнения.
- 10. Метод неопределённых коэффициентов решения неоднородного уравнения с постоянными коэффициентами.
- 11. Общая теория однородных линейных систем обыкновенных дифференциальных уравнений. Определитель Вронского. Линейная независимость решений системы. Фундаментальная система решений и общее решение для линейной системы уравнений.
- 12. Построение фундаментальной системы решений для системы уравнений с постоянными коэффициентами в случае некратных корней характеристического уравнения.

- 13. Построение фундаментальной системы решений для системы уравнений с постоянными коэффициентами в случае кратных корней характеристического уравнения.
- 14. Фундаментальная матрица системы. Метод вариации постоянных при решении неоднородной системы.
- 15. Основные понятия теории устойчивости. Устойчивость решения линейной системы. Устойчивость по первому приближению (первый метод Ляпунова).

Исследование траекторий в окрестности точки покоя. Фазовая плоскость. Фазовый портрет системы второго

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ результатов обучения (РО) по дисциплине (модулю)					
РО и	Не зачтено	Зачтено			
виды оценочных средств					
Знания	Отсутстви	Фрагментарны	Общие, но не	Сформированные	
(виды оценочных средств:	е знаний	е знания	структурированные	систематические	
устные и письменные опросы и			знания	знания	
контрольные работы, тесты,					
u m.n.)					
Умения	Отсутстви	В целом	В целом успешное,	Успешное и	
(виды оценочных средств:	е умений	успешное, но	но содержащее	систематическое	
практические контрольные		не	отдельные пробелы	умение	
задания, написание и защита		систематическо	умение (допускает		
рефератов на заданную тему и		е умение	неточности		
m.n.)			непринципиального		
			характера)		
Навыки	Отсутстви	Наличие	В целом,	Сформированные	
(владения, опыт	е навыков	отдельных	сформированные	навыки	
деятельности)	(владений,	навыков	навыки (владения),	(владения),	
(виды оценочных средств:	опыта)	(наличие	но используемые не в	применяемые при	
выполнение и защита курсовой		фрагментарног	активной форме	решении задач	
работы, отчет по практике,		о опыта)			
отчет по НИР и т.п.)					

8. Ресурсное обеспечение:

- Перечень основной и дополнительной литературы

а) основная литература:

- 1. Тихонов А.Н., Васильева А.Б., Свешников А.Г. Дифференциальные уравнения. М.: «Наука», 1980. -230 с.
- 2. Эльсгольц Л.Э. Дифференциальные уравнения и вариационное исчисление. М.: «Наука», 1965. -279 с.
- 3. Дмитриев В.И. Дифференциальные уравнения и вариационное / Учебное пособие. М.: Издательский отдел факультета ВМиК МГУ им. М.В. Ломоносова, 2000. 95 с.
- 4. Филиппов А.Ф. Сборник задач по дифференциальным уравнениям. М.: Интеграл-Пресс, 1998. – 208 с.
- 5. Ермаков В.И., Бобрик Г.И., Гринцевичюс В.К., Матвеев В.И. и др. Сборник задач по высшей математике для экономистов. М.: ИНФРА-М, 2009. 575 с.

б) дополнительная литература:

- 1. Понтрягин Л.С. Обыкновенные дифференциальные уравнения. М.: «Наука», 1974. 210 с.
- 2. Петровский И.Г. Лекции по теории обыкновенных дифференциальных уравнений. М.: «Наука», 1970. 190 с.

в) Интернет-ресурсы:

Journals of American Mathematical Society – http://www.ams.org/journals/ Journal of the London Mathematical Society – http://www.jlms.oxfordjournals.org/

г) базы данных, информационно-справочные и поисковые системы:

https://isu.bibliotech.ru/

http://e.lanbook.com

http://rucont.ru/

http://ibooks.ru/

http://e-library.ru/

http://educa.isu.ru/

-Описание материально-технического обеспечения.

Учебный кабинет №144, (58,,22 м²)

Учебных столов – 15 шт., стульев – 31 шт.,

3-х створчатая доска для мела – 1 шт.,

Стационарный экран для проектора – 1 шт.

Стол для преподавателя – 1 шт.

Экран настенный для видео информирования (телевизор) – 1 шт.,

Компьютерный класс общего назначения № 349 (103,94 кв. м).

Экран настенный для проектора 180х180 (1 шт.); доска маркерная настенная 2000х100 (1 шт.); шкаф для учебных пособий 1226х445х2035, шкаф для учебных пособий 1226х445х2035 (1 шт.); стол большой для преподавателя (1 шт.), стол компьютерный для преподавателя 1500х2000х750 (1 шт.), кресло преподавателя (1 шт.), стол для компьютера 1200х1500х750 (20 шт.), стул подъёмно-поворотный (20 шт.), стул полумягкий (7 шт.), вешалка настенная (1 шт.), шкаф для документов металлический (1 шт.), блок шкафов 2400х400х1900 (3 секции) (1 шт.), шкаф (1 секция от 5-ти секционного) (1 шт.), стол компьютерный для преподавателя 1500х2000х750 (1 шт.), стол для проектора 500х650х700 (1 шт.), стол рабочий для специалиста 1300х600х750 (2 шт.), кресло преподавателя (1 шт.).

Компьютерная техника и оргтехника

Коммутационный шкаф: SuperStackIIHUB 24 ports (1 шт.); SuperStackIIHUB 24 ports (1 шт.); принтер HPLaserJetP1005 (1 шт.); сканер планшетный HP Scanjet 3500c (1 шт.); компьютерные комплекты (22 компл.): Монитор Acer 21.5" G226HQL, 8ms, 1920*1080, (16*9), VGA; Системный блок: процессор Intel(R)_Core(TM)_i3-3240_CPU_3.40GHz, материнская плата MSI B75MA-E33, оперативная память DDR3 4.00 ГБ DVD-дисковод

ATAPI iHAS122 W, жесткий диск TOSHIBA DT01ACA050 1Tb, звуковая карта RealtekHighDefinitionAudio (встроенная) видеокарта: Intel(R) HD Graphics (встроенная), сетевая карта RealtekPCIe GBE FamilyController (встроенная), мышь Genius, клавиатура Genius).

- 9. Соответствие результатов обучения по данному элементу ОПОП результатам освоения ОПОП указано в общей характеристике ОПОП.
- 10. Язык преподавания- русский язык.
- 11. Преподаватель.

Профессор кафедры прикладной математики Осипенко Г.С.

12. Автор (авторы) программы. Профессор кафедры прикладной математики Осипенко Г.С.