Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Московский государственный университет имени М.В. Ломоносова филиал МГУ в г. Севастополе факультет естественных наук кафедра физики и геофизики

УТВЕРЖДАЮ

Директо

Севастополе

О.А. Шпырко 20 21 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Наименование дисциплины (модуля):

Б-ОН Физика

код и наименование дисциплины (модуля)

Уровень высшего образования: бакалавриат

Направление подготовки:

05.03.02 География

(код и название направления/специальности)

Направленность (профиль) ОПОП:

общий

(если дисциплина (модуль) относится к вариативной части программы)

Форма обучения:

очная

очная, очно-заочная

Рабочая программа рассмотрена на заседании кафедры физики и геофизики протокол №4 от «27» августа 2021 г. Заведиющий кафедрой

(подпись)

(К.В. Показеев)

Рабочая программа одобрена Методическим советом Филиала МГУ в г. Севастополе Протокол №8 от «31» августа 2021 г.

ини (С.А. Наличаева)

Севастополь, 2021

Рабочая программа дисциплины разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки «Физика» в редакции приказа МГУ от 30 декабря 2016 г.

Годы приема на обучение - 2020.

курс -1, 2 семестры -2, 3 зачетных единиц -3 академических часов -108, в т.ч.

лекций — 44 часа практических занятий — 36 часов самостоятельная работа студентов — 28 часов

Форма промежуточной аттестации:

зачет во 2 семестре, экзамен в 3 семестре

1. Место дисциплины в структуре ОПОП ВО.

Курс общей физики является основным в общей системе современной университетской подготовки профессионалов в области естественных наук. Он излагается на младших курсах и его главной задачей является создание фундаментальной базы знаний, на основе которой в дальнейшем можно развивать более углубленное и детализированное изучение всех разделов естествознания.

Раздел курса «Механика» излагается во втором семестре на первом курсе. Для его освоения требуются элементарные практические навыки дифференцирования и интегрирования.

Разделы курса «Молекулярная физика», «Электричество и магнетизм» и «Оптика» излагаются в третьем семестре на втором курсе. Для их освоения требуется практические умения дифференцирования, интегрирования, использования векторов и комплексных чисел, а также векторного анализа, обучение которым необходимо проводить на первом курсе в дисциплине «Высшая математика».

2. Входные требования для освоения дисциплины

Базовые знания по физике и высшей математике.

3. Результаты обучения по дисциплине.

Планируемые результаты обучения по дисциплине:

Знать:

фундаментальные понятия и законы классической механики, молекулярной физики, электродинамики и оптики –

- кинематика материальной точки;
- преобразования Галилея;
- динамика материальной точки;
- законы сохранения;
- неинерциальные системы отсчета;
- движение абсолютно твердого тела;
- колебательное движение;
- механика жидкостей и газов;
- молекулярно-кинетическая теория;
- основы термодинамики;
- электрический заряд, электростатическое поле, потенциал;
- проводники в электростатическом поле;
- диэлектрики в электростатическом поле;
- энергия электрического поля;
- постоянный ток;
- магнитное поле;
- магнетики;
- электромагнитная индукция;
- энергия магнитного поля;
- электромагнитные колебания и законы переменного тока;
- уравнения Максвелла;
- электромагнитные волны;
- интерференция света;
- дифракция света;
- поляризация света;

- взаимодействие света с веществом;
- тепловое излучение;
- световые кванты.

Уметь:

- применять знания законов физики для решения физических задач, используя доступный ему математический аппарат;
- использовать полученные знания для освоения физических основ в общей, физической и экономической географии.

Владеть:

- базовыми знаниями фундаментальных разделов физики в объеме, необходимом для освоения физических основ в общей, физической и экономической географии;
- навыками работы со справочной и учебной литературой и другими необходимые источники информации.

Иметь опыт:

применения физических законов для решения прикладных задач по разделам общей физики.

- **4. Формат обучения** контактный, дистанционный с использованием Портала дистанционной поддержки образовательного процесса Филиала (https://distant.sev.msu.ru/).
- **5.** Объем дисциплины составляет 3 з.е., в том числе 80 академических часов, отведенных на контактную работу обучающихся с преподавателем (аудиторная нагрузка), 28 академических часов на самостоятельную работу обучающихся.
- 6. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий.

6.1. Структура дисциплины по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий.

Наименование	Номинальные т	рудозатраты обучающ	затраты обучающегося		
разделов и тем	Контакт	ная работа	Самост	часов	RICC
дисциплины,	(работа во взаимодействии с		оятельн		ТЪ
	•	авателем)	ая	CHX	сон
Форма	Виды контактной ра	аботы, академические	работа	ecr	то F 100° 3ан
промежуточной	Ч	асы	обучаю	ЬИІ	цеп
аттестации по	2	JC OT	щегося,	Ţew	KyI Iebë Mej
дисциплине	ИЯ НО	Занятия семинарскоі о типа*	академи	Всего академических	Форма текущего контроля успеваемости (наименование)
	аняти. ционн типа*	анятия инарск типа*	ческие	o a	ма (Г
	Занятия лекционно типа*	Занятия минарск о типа*	часы	cer	doç
	Jie			В	Ð
Кинематика и ди-	Консультации, 2	Решение задач, 2	1	5	-
намика					
материальной					
точки.					
Законы	Консультации, 2	Решение задач, 2	1	5	-
сохранения.					
Движение	Консультации, 2	Решение задач, 2	2	6	-
твердого тела.					

	**	T =	1 -		1
Неинерциальные	Консультации, 2	Решение задач, 2	2	6	-
системы отсчета.	Y4 2	D 0			
Динамика	Консультации, 2	Решение задач, 2	2	6	-
механических					
колебаний и					
кинематика					
колебаний и волн.					
Элементы	Консультации, 2	Решение задач, 1	2	5	-
механики					
жидкостей и					
газов.					
Молекулярно-	Консультации, 2	Решение задач, 2	2	6	-
кинетическая тео-	-				
рия идеального					
газа.					
Основы термоди-	Консультации, 4	Решение задач, 2	1	7	_
намики.	, ,				
Реальные газы.	Консультации, 2	Решение задач, 2	1	5	_
Фазовые переходы.	•	т ещение зада 1, 2	•		
Свойства жидко-	Консультации, 2	Решение задач, 2	1	5	_
стей и твердых тел.	Консультации, 2	т сшение задач, 2	1	3	
Понятие об	Консультации, 2	Решение задач, 2	2	6	Vонтрон ноя
	Консультации, 2	Гешение задач, 2	2	U	Контрольная
электрическом					работа
заряде и					
электростатиче-					
ском поле.	10 0	D 2	1	~	
Потенциал	Консультации, 2	Решение задач, 2	1	5	-
электростатическ					
ого поля.					
Электрическое					
поле в веществе.				_	
Постоянный	Консультации, 2	Решение задач, 2	1	5	-
электрический ток.					
Стационарное					
магнитное поле.					
Явление электро-	Консультации, 4	Решение задач, 2	1	5	-
магнитной индук-					
ции.					
Магнитные свой-					
ства вещества					
Переменный ток.	Консультации, 2	Решение задач, 2	1	5	-
Электромагнит-					
ные волны.					
Законы геометри-	Консультации, 2	Решение задач, 2	2	6	-
ческой оптики.	-				
Волновые свой-					
ства света: инте-					
рференция.					
Дифракция света.	Консультации, 2	Решение задач, 1	1	4	_
Взаимодействие	Консультации, 4	Решение задач, 2	2	8	Контрольная
электромагнитных	топозивищий, т	топпонно зада 1, 2			работа
Волн с веществом.					Pacora
Поляризация света.					
тюлиризация света.		1			

Корпускулярные свойства	Консультации, 2	Решение задач, 2	2	6	-
электромагнит-					
ного излучения.					
Другие виды	-	-	-	-	-
самостоятельной					
работы (при					
наличии):					
например,					
курсовая работа,					
творческая работа					
(эссе)					
	44	36	28	108	
Промежуточная			14	14	
аттестация (зачет					
и экзамен)					
Итого			-	-	

6.2. Содержание разделов (тем) дисциплины.

		е разделов (тем) дисциплины.			
No	Наименование	Содержание разделов (тем) дисциплин			
Π/Π	разделов (тем)				
	дисциплины				
Лект	ции				
1.	Кинематика точки.	Материальная точка. Системы отсчета. Траектория. Путь.			
		Перемещение. Скорость. Ускорение. Нормальное и			
		тангенциальное ускорения. Угловая скорость и угловое ускорение.			
		Векторы, дифференцирование, векторное произведение, правило			
		правой руки, дифференциалы.			
2.	Динамика	Сила. Масса. Первый закон Ньютона. Закон всемирного			
	материальной точки.	тяготения. Физическая причина приливов и отливов.			
	_	Ускорение свободного падения. Упругие силы. Закон Гука.			
		Силы сухого и жидкого трения. Второй закон Ньютона как			
		дифференциальное уравнение движения. Закон движения.			
		Примеры нахождения закона движения как решения			
		уравнения движения: свободное падение в однородном поле			
		сил тяжести; свободные колебания тела на пружине.			
3.	Закон сохранения	Система материальных точек. Импульс. Закон изменения и			
	импульса.	сохранения импульса. Теорема о движении центра масс.			
		Механическая работа. Примеры вычисления работы сил.			
4.	Законы сохранения	Кинетическая и потенциальная энергии. Закон превращения и			
	энергии и момента	сохранения механической энергии.			
	импульса.	Потенциальная энергия в поле тяготения. Космические			
		скорости.			
		Момент силы и момент импульса относительно точки и			
		относительно оси. Закон изменения и сохранения момента			
		импульса. Кинематика движения планет, законы Кеплера.			
5.	Движение твердого	Понятие о степенях свободы. Кинематика вращательного			
	тела.	движения. Момент инерции тела.			
		Теорема Штейнера. Уравнение вращательного движения			
		тела относительно оси (уравнение моментов). Закон			
		сохранения момента импульса для твердых тел.			
		Гироскопический эффект. Прецессия гироскопа.			

		Кинетическая энергия при вращательном и общем плоском			
		движении тела.			
6.	Законы механики в	Инерциальные системы отсчета. Преобразования Галилея			
	неинерциальных	для инерциальных систем отсчета.			
	системах отсчета.	Уравнения движения материальной точки в			
		равноускоренной и в равномерно вращающейся			
		неинерциальных системах отсчета. Силы инерции.			
		Центробежная и кориолисова силы инерции, примеры их			
		проявления в системе отсчета, связанной с Землей. Изменения			
		силы тяжести с широтой местности. Влияние силы Кориолиса на			
		глобальные атмосферные явления.			
7.	Динамика	Понятие о колебаниях. Гармоническое колебание и его			
	механических	характеристики: амплитуда, период и частота, фаза. Свободные			
	колебаний.	гармонические колебания. Уравнение движения осциллятора			
		и его решение.			
		Маятники: пружинный, физический, математический,			
		крутильный.			
		Свободные затухающие колебания, уравнение движения			
		осциллятора при наличии сил жидкого трения; формула			
		затухающих колебаний; коэффициент и логарифмический			
		декремент затухания. Превращения энергии при свободных механических колебаниях.			
		Вынужденные колебания: уравнение движения и его			
		решение. Фазовые и амплитудные резонансные кривые.			
		Резонанс. Понятие о добротности осциллятора.			
8.	Кинематика	Кинематика колебаний. Векторная диаграмма			
0.	колебаний и волн.	колебания. Сложение коллинеарных колебаний с			
	Rosicoanini ii Bosini.	одинаковыми частотами. Биения. Сложение взаимно-			
		перпендикулярных гармонических колебаний. Фигуры			
		Лиссажу.			
		Волны. Плоская гармоническая бегущая волна. Длина			
		волны и волновое число. Звуковые волны. Дифференциальное			
		волновое уравнение. Стоячая волна.			
9.	Элементы механики	Понятие о турбулентном, ламинарном и стационарном			
	жидкостей и газов.	течениях жидкости и газа. Уравнение неразрывности струи.			
		Уравнение Бернулли. Движение вязкой жидкости. Закон			
		Ньютона для силы внутреннего трения. Формула Пуазейля.			
		Формула Стокса.			
10.	Молекулярно-кинетич	<u> </u>			
	теория	явлений. Масса и концентрация молекул. Температура.			
	идеального газа.	Газовые законы. Модель идеального газа. Основное уравнение			
		молекулярно-кинетической теории газов. Распределение			
		энергии по степеням свободы. Броуновское движение.			
		Статистическое распределение. Средние величины.			
		Флуктуации. Распределение Больцмана. Барометрическая			
		формула. Закон Максвелла распределения молекул по			
		скоростям. Наиболее вероятная, средняя и среднеквадратичная			
		скорости молекул.			
		Явления переноса: диффузия, внутреннее трение и			
11	Oavony	теплопроводность.			
11.	Основы	Понятие о состоянии системы, термодинамическом			
	термодинамики.	процессе и термодинамическом равновесии. Внутренняя энергия. Первое начало термодинамики. Теплоемкость газов.			
		энсргия. первое начало термодинамики. теплоемкость газов.			

		цепи переменного тока.
		переменный ток. Собственные и вынужденные электрические колебания в колебательном контуре. Энергия и мощность в
20.	Переменный ток.	Условие квазистационарности. Синусоидальный
		Кюри. Магнитное поле Земли.
ļ		Природа ферромагнетизма. Магнитный гистерезис. Точка
	вещества.	напряженности магнитного поля. Диа- и парамагнетики.
19.	Магнитные свойства	Намагничение вещества. Вектор намагничивания. Вектор
ļ	индукции.	магнитном поле. Энергия магнитного поля.
	электромагнитной	Фуко. Самоиндукция. Индуктивность. Взаимная индукция. Работа по перемещению проводника и контура с током в
18.	Явление	Закон Фарадея для ЭДС индукции. Правило Ленца. Токи
10	Ор жонис	поля на движущийся заряд, сила Лоренца. Эффект Холла.
		токов (закон Ампера). Действие электрического и магнитного
		кругового тока. Магнитное поле соленоида. Взаимодействие
		индукции. Принцип суперпозиции. Магнитное поле прямого и
	магнитное поле.	Лапласа. Теоремы о потоке и циркуляции вектора магнитной
17.	Стационарное	Вектор магнитной индукции. Формула Био-Савара-
		Электрические цепи с последовательным и параллельным соединением. Работа и мощность тока.
ļ	электрический ток.	напряжение. Закон Ома. Сопротивление проводников.
16.	Постоянный	Сила и плотность тока. Электродвижущая сила и
		энергия поля.
		Теорема Гаусса при наличии диэлектриков. Конденсатор,
	поле в веществе.	электрическом поле. Вектор электрического смещения.
	поля. Электрическое	напряжённостью поля. Проводники и диэлектрики в
1.	электростатического	электростатического поля. Потенциал поля. Его связь с
15.	Потенциал	Теорема о циркуляции напряженности
ļ	поле.	1
	заряде и электростатическом	Теорема Гаусса. Поле точечного заряда, плоскости и шара.
	электрическом заряде и	электрического заряда. Закон Кулона. Напряженность поля, силовые линии, поток напряженности. Принцип суперпозиции.
14.	Понятие об	Взаимодействие электрических зарядов. Закон сохранения
1.4	Понатно об	Теплоемкость твердых тел, формула Дюлонга-Пти.
		атомов в кристаллах, механизм теплопроводности.
		Аморфные и кристаллические тела. Тепловые колебания
		явления.
	и твёрдых тел.	под искривленной поверхностью жидкости. Капиллярные
13.	Свойства жидкостей	Свойства жидкостей. Поверхностное натяжение. Давление
		Клапейрона-Клаузиуса. Диаграмма состояний. Тройная точка.
		перехода. Представление о фазовых переходах. Уравнение
		Изменения агрегатного состояния вещества. Теплота
		Ваальса. Насыщенный пар. Влажность воздуха.
	Фазовые переходы.	межмолекулярных силах. Уравнение состояния реального газа Ван-дер-Ваальса. Критическое состояние. Изотермы Ван-дер-
12.	Реальные газы.	Потенциальная кривая взаимодействия молекул, понятие о
10	_	Энтропия.
		Цикл Карно. Теоремы Карно. Второе начало термодинамики.
		Тепловые машины. Обратимые и необратимые процессы.
		адиабатическая атмосфера.

	волны.	Ток смещения. Система уравнений Максвелла.		
	DOJIIIDI.	Скорость распространения электромагнитных волн в		
		диэлектрических средах. Энергия электромагнитной волны.		
		Вектор Умова-Пойнтинга.		
22.	Законы	Законы распространения, отражения, преломления света.		
	геометрической	Понятие показателя преломления. Границы применимости		
	оптики.	законов геометрической оптики.		
23.	Волновые свойства	Когерентность колебаний как условие интерференции.		
	света:	Методы получения когерентных источников. Оптическая		
	интерференция.	разность хода. Опыт Юнга. Интерференция в тонких пленках.		
		Полосы равной толщины и равного наклона. Применение		
2.4	T 1	интерференции света.		
24.	Дифракция света.	Принцип Гюйгенса-Френеля. Зоны Френеля. Дифракция на		
		щели и дифракционной решетке. Дифракционный спектр.		
		Дифракция рентгеновских лучей на кристаллической решётке. Понятие о голографии.		
25.	Взаимодействие	Нормальная и аномальная дисперсия. Поглощение и		
23.	электромагнитных	рассеяние света. Закон Бугера. Излучение Вавилова-Черенкова.		
	волн с веществом.	расселине света. Закон Бугера. Полу тенне Бавилова Теренкова.		
26.	Поляризация света.	Закон Малюса. Поляризационные приспособления.		
20.	полиризации съста.	Двойное лучепреломление. Искусственная оптическая		
		анизотропия при деформациях. Эффекты Керра и Коттон-		
		Мутона.		
		Поляризация света при отражении и преломлении на		
		границе раздела изотропных диэлектриков. Закон Брюстера.		
		Явление вращения плоскости поляризации.		
27.	Корпускулярные	Явления, противоречащие волновой теории света: законы теплового		
	свойства	излучения, фотоэффект, эффект Комптона, линейчатые спектры атомов.		
	электромагнитного	Гипотезы Планка и Эйнштейна о световых квантах.		
	излучения.	Дискретность атомных состояний. Спектр излучения атома		
Cons		водорода. Постулаты Бора. Правила квантования.		
1.	инары Тема 1	Кинематика и динамика материальной точки.		
2.	Тема 2	Динамика материальной точки.		
2.	TOMA 2	Самостоятельная работа по темам 1 и 2.		
3.	Тема 3	Закон сохранения импульса.		
4.	Тема 4	Работа сил. Закон сохранения энергии. Столкновения тел.		
		Самостоятельная работа по темам 3 и 4.		
5.	Тема 5	Кинематика и динамика абсолютно твердого тела. Момент		
		инерции относительно оси.		
6.	Тема 6	Движение материальной точки и системы точек в		
		неинерциальных системах отсчета. Силы инерции.		
	T 7	Самостоятельная работа по темам 5 и 6.		
7.	Тема 7	Динамика механических колебаний.		
8.	Тема 8	Свободные затухающие и вынужденные колебания. Резонанс.		
9.	Тема 9	Элементы гидродинамики. Контрольная работа по темам, пройденным на занятиях 1-9.		
10.	Тема 10	Молекулярно-кинетическая теория идеального газа.		
11.	Тема 10 Тема 11	Основы термодинамики.		
11.	1 CIVIA 1 I	Самостоятельная работа по темам 10 и 11.		
12.	Тема 12	Взаимодействие молекул и фазовые переходы.		
_ 		Ansagane webeweeter.		

13.	Тема 13	Свойства жидкостей и твердых тел.				
		Контрольная работа по темам занятий 10-13.				
14.	Тема 14	Закон Кулона и принцип суперпозиции. Напряжённость поля.				
		Теорема Остроградского-Гаусса и ее применения.				
15.	Тема 15	Потенциал. Энергия. Емкость. Диэлектрики. Граничные				
		условия.				
		Самостоятельная работа по темам 14 и 15.				
16.	Тема 16	Постоянный электрический ток.				
17.	Тема 17	Закон Био-Савара-Лапласа и принцип суперпозиции. Сила				
		Ампера. Движение заряженных частиц в электромагнитных				
		полях.				
18.	Тема 18	Закон электромагнитной индукции. Самоиндукция. Взаимная				
		индукция. Энергия магнитного поля.				
19.	Тема 19	Самостоятельная работа по темам 16-18.				
20.	Тема 20	Квазистационарные токи. Переходные процессы. Переменный				
		ток.				
21.	Тема 21	Контрольная работа по темам 14-20.				
22.	Темы 22-23	Геометрическая оптика. Интерференция света.				
23.	Темы 24-25	Дифракция света. Поляризация света.				
24.	Тема 26	Контрольная работа по темам 22-25.				

7. Фонд оценочных средств (ФОС) для оценивания результатов обучения по дисциплине.

7.1. Типовые контрольные задания или иные материалы для проведения текущего контроля успеваемости.

Система контроля знаний включает текущую аттестацию (две контрольных работы в третьем семестре) и промежуточную аттестацию (зачет во втором семестре и экзамен в третьем семестре). Контрольные работы состоят из 4 задач по темам, изученным на практических занятиях. Результаты контрольных и самостоятельных работ служат основой для зачета. Зачет также включает решение задач и ответы на вопросы преподавателя.

В третьем семестре проводится экзамен по всем разделам физики, пройденным во втором и третьем семестрах. В экзаменационные билеты включается по одному вопросу по материалу, пройденному во втором семестре.

Экзамен проводится в устной форме и оценивается по четырехбалльной системе: «неудовлетворительно», «удовлетворительно», «хорошо», «отлично».

Примеры вариантов контрольных работ:

Контрольная работа 1, Электричество и магнетизм. Вариант 3.

- **1.** Электростатическое поле создано положительно заряженной с поверхностной плотностью $\sigma = 1$ нКл/м² сферой радиусом R = 5 см. Определите разность потенциалов между двумя точками этого поля, лежащими на расстояниях $r_1 = 10$ см и $r_2 = 15$ см от центра сферы.
- **2.** Определите суммарный импульс электронов в прямом проводе длиной l=500 м, по которому течет ток I=20A.
- **3.** Согласно теории Бора, электрон в атоме водорода движется вокруг ядра по круговой орбите радиусом r = 52.8 пм. Определите магнитную индукцию B поля, создаваемого электроном в центре круговой орбиты.
- **4.** Две длинные катушки намотаны на общий сердечник, причем индуктивности этих катушек $L_1 = 0,64~\Gamma$ н и $L_1 = 0,04~\Gamma$ н. Определите во сколько раз число витков 1й катушки больше, чем 2й

- **1.** На линзу с показателем преломления n=1,58 нормально падает монохроматический свет с длиной волны $\lambda=0,55$ мкм. Для устранения потерь света в результате отражения на линзу наносится тонкая пленка. Определите: 1) оптимальный показатель преломления для пленки; 2) толщину пленки.
- **2.** Определите радиус третьей зоны Френеля, если расстояние от точечного источника света (λ = 0,6 мкм) до волновой поверхности и от волновой поверхности до точки наблюдения равно 1,5 м.
- **3.** Пучок естественного света падает на стеклянную призму с углом $\alpha = 30^\circ$. Определите показатель преломления стекла, если отраженный луч является плоскополяризованным.
- **4.** Определите, как и во сколько раз изменится мощность излучения черного тела, если длина волны, соответствующая максимуму его спектральной плотности энергетической светимости, сместилась с $\lambda = 720$ нм до $\lambda = 400$ нм.

7.2 Типовые контрольные задания или иные материалы для проведения промежуточной аттестации.

- для экзамена

Вопросы экзаменационных билетов.

- 1. Системы отсчета. Траектория. Закон движения. Путь, перемещение, скорость, ускорение. Нормальное и тангенциальное ускорения. Угловая скорость и угловое ускорение.
- 2. Сила. Масса. Законы Ньютона. Второй закон Ньютона как дифференциальное уравнение движения. Силы сухого и жидкого трения, трения покоя. Движение тела в вязкой жидкости. Упругие силы.
- 3. Закон всемирного тяготения. Ускорение свободного падения. Движение тела в поле сил тяжести. Вес тела
- 4. Импульс. Закон изменения и сохранения импульса. Теорема о движении центра масс.
- 5. Механическая работа. Кинетическая и потенциальная энергии. Закон превращения и сохранения механической энергии.
- 6. Момент силы и момент импульса относительно точки и относительно оси. Закон изменения и сохранения момента импульса.
- 7. Потенциальная энергия гравитационного взаимодействия. Космические скорости. Кинематика движения планет, законы Кеплера.
- 8. Момент инерции тела. Теорема Штейнера. Уравнение вращательного движения тела относительно оси (уравнение моментов). Прецессия гироскопа.
- 9. Инерциальные и неинерциальные системы отсчета. Силы инерции. Уравнения движения материальной точки в равноускоренной и в равномерно вращающейся неинерциальных системах отсчета. Центробежная и кориолисова силы инерции.
- 10. Свободные колебания математического маятника и тела на пружине. Уравнение движения осциллятора и его решение. Характеристики гармонических колебаний: амплитуда, период и частота, фаза. Превращения энергии при свободных механических колебаниях.
- 11. Волновое уравнение и бегущая волна. Плоская гармоническая волна. Длина волны и волновое число, фазовая скорость. Продольные и поперечные волны. Стоячая волна.
- 12. Кинематика колебаний. Векторная диаграмма колебания. Сложение коллинеарных колебаний с одинаковыми частотами. Биения. Сложение взаимно-перпендикулярных гармонических колебаний. Фигуры Лиссажу
- 13. Свободные затухающие колебания. Уравнение движения осциллятора при наличии сил жидкого трения и его решение. Коэффициент и логарифмический декремент затухания.
- 14. Вынужденные колебания: уравнение движения и его решение. Резонанс. Добротность осциллятора.
- 15. Стационарное течение жидкости или газа. Уравнение неразрывности струи. Уравнение Бернулли. Движение вязкой жидкости: закон Ньютона для силы внутреннего трения. Турбулентное и ламинарное течения жидкости или газа.
- 16. Модель идеального газа. Основное уравнение кинетической теории газов. Уравнение состояния идеального газа. Изопроцессы.
- 17. Межмолекулярные силы, потенциальная кривая взаимодействия молекул. Уравнение состояния реального газа Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса.

- 18. Внутренняя энергия. Первый закон термодинамики. Теплоемкость. Адиабатические, обратимые и необратимые процессы. Цикл Карно.
- 19. Тепловая машина. Холодильник. Коэффициент полезного действия. Второй закон термодинамики. Теоремы Карно. Энтропия.
- 20. Статистический и термодинамический методы описания явлений. Статистическое распределение. Средние величины и флуктуации. Состояние системы, термодинамический процесс и термодинамическое равновесие.
- 21. Распределение Больцмана. Барометрическая формула. Распределение Максвелла.
- 22. Распределение энергии по степеням свободы. Теплоемкость газов. Броуновское движение.
- 23. Явления переноса: диффузия, внутреннее трение и теплопроводность. Законы Фика, Ньютона и Фурье.
- 24. Поверхностное натяжение. Давление под искривленной поверхностью жидкости. Капиллярные явления.
- 25. Понятие об электростатическом поле и электрическом заряде. Закон Кулона. Напряженность. Принцип суперпозиции.
- 26. Теорема Гаусса. Теорема о циркуляции напряженности.
- 27. Работа электростатических сил. Потенциал и разность потенциалов. Связь между напряженностью электрического поля и потенциалом.
- 28. Общее представление о структуре диэлектриков. Поляризация диэлектриков. Вектор поляризации. Диэлектрическая восприимчивость вещества.
- 29. Теорема Гаусса при наличии диэлектриков. Вектор электрического смещения.
- 30. Проводники в электростатическом поле. Условия равновесия зарядов на проводнике. Векторы Е и D на поверхности проводника.
- 31. Электроемкость. Энергия электрического поля.
- 32. Электрический ток. Сила и плотность тока. Сторонние силы. ЭДС и напряжение.
- 33. Закон Ома для участка цепи. Сопротивление проводников. Закон Ома для замкнутой цепи. Закон Джоуля-Ленца.
- 34. Постоянное магнитное поле токов. Вектор магнитной индукции.
- 35. Формула Био-Савара-Лапласа. Теоремы о потоке и циркуляции вектора магнитной индукции.
- 36. Закон Ампера. Взаимодействие параллельных проводников с током. Действие магнитного поля на контур с током.
- 37. Сила Лоренца. Движение заряда в магнитном поле. Эффект Холла.
- 38. Явление электромагнитной индукции. Закон Фарадея для ЭДС индукции. Токи Фуко.
- 39. Самоиндукция. Индуктивность. Взаимная индукция.
- 40. Энергия магнитного поля.
- 41. Магнитные свойства вещества. Вектор намагничивания. Магнитная проницаемость и восприимчивость веществ. Диа- и парамагнетики.
- 42. Вектор напряж-ти магнит. поля. Природа ферромагнетизма. Магнитный гистерезис. Точка Кюри.
- 43. Квазистационарные токи. Условие квазистационарности. Синусоидальный переменный ток. Мощность в цепи переменного тока.
- 44. Собственные и вынужденные электрические колебания в колебательном контуре.
- 45. Основы теории Максвелла для электромагнитного поля. Ток смещения. Система уравнений Максвелла.
- 46. Электромагнитные волны. Скорость распространения электромагнитных волн в диэлектрических средах. Энергия электромагнитной волны. Вектор Умова-Пойнтинга.
- 47. Законы геометрической оптики и условия их применимости. Понятие показателя преломления.
- 48. Интерференция света. Когерентность колебаний как условие интерференции.
- 49. Оптическая разность хода. Интерференция в тонких пленках. Применение интерференции света.
- 50. Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля для расчета дифракционной картины.
- 51. Дифракция на щели и дифракционной решетке. Дифракция рентгеновских лучей.
- 52. Поляризация света. Закон Малюса. Поляризационные приспособления.
- 53. Искусственная оптическая анизитропия при деформациях. Эффекты Керра и Коттон-Мутона.
- 54. Явление вращения плоскости поляризации. Поляризация света при отражении и преломлении на границе раздела изотропных диэлектриков. Закон Брюстера.

- 55. Классическая теория взаимодействия света с веществом. Поглощение света. Закон Бугера. Излучение Вавилова-Черенкова.
- 56. Явления, противоречащие волновой теории света: законы теплового излучения, фотоэффект, эффект Комптона.
- 57. Гипотезы Планка и Эйнштейна о световых квантах.
- 58. Линейчатые спектры атомов. Модель Бора водородоподобного атома.

для зачета

ШКАЛА И КРИТЕР	ии оценив	АНИЯ результато	в обучения (РО) по дисц	иплине
Оценка РО и соответствующие виды оценочных средств	Не зачтено		Зачтено	
Знания (виды оценочных средств: устные и письменные опросы и контрольные работы, тесты, и т.п.)	Отсутствие знаний	Фрагментарные знания	Общие, но не структурированные знания	Сформированные систематические знания
Умения (виды оценочных средств: практические контрольные задания, написание и защита рефератов на заданную тему и т.п.)	Отсутствие умений	В целом успешное, но не систематическо е умение	В целом успешное, но содержащее отдельные пробелы умение (допускает неточности непринципиального характера)	Успешное и систематическое умение
Навыки (владения, опыт деятельности) (виды оценочных средств: выполнение и защита курсовой работы, отчет по практике, отчет по НИР и т.п.)	Отсутствие навыков (владений, опыта)	Наличие отдельных навыков (наличие фрагментарного опыта)	В целом, сформированные навыки (владения), но используемые не в активной форме	Сформированные навыки (владения), применяемые при решении задач

для экзамена

для экзамена				
ШКАЛА И КРИТЕР	ии оценив	АНИЯ результато	в обучения (РО) по диси	иплине
Оценка	2	3	4	5
РО и				
соответствующие				
виды оценочных средств				
Знания	Отсутствие	Фрагментарные	Общие, но не	Сформированные
(домашние задания)	знаний	знания	структурированные	систематические
			знания	знания
Умения	Отсутствие	В целом	В целом успешное, но	Успешное и
(контрольные работы)	умений	успешное, но не	содержащее	систематическое
		систематическо	отдельные пробелы	умение
		е умение	умение (допускает	
			неточности	
			непринципиального	
			характера)	
Навыки	Отсутствие	Наличие	В целом,	Сформированные
(владения, опыт деятельности)	навыков	отдельных	сформированные	навыки (владения),
(экзамен)	(владений,	навыков	навыки (владения), но	применяемые при
	опыта)	(наличие	используемые не в	решении задач
		фрагментарного	активной форме	
		опыта)		

8. Ресурсное обеспечение:

Перечень основной и дополнительной литературы

- 1. Стрелков С.П. Механика / С.П. Стрелков. 4-е изд. стер. М.: Лань, 2005. 560 с.
- 2. Иродов И.Е. Задачи по общей физике: Учебное пособие / И.Е. Иродов. 15-е изд. стер. М.: Лань, 2018. 420 с.

- 3. Кикоин А.К., Кикоин И.К. Молекулярная физика / А.К. Кикоин, И.К. Кикоин. -4-е изд. М.: Лань, 2008.-480 с.
- 4. Ландсберг Г.С. Оптика / Г.С. Ландсберг 7-е изд. М.: Физматлит, 2017. 852 с.
- 5. Алешкевич В.А. Электромагнетизм / В.А. Алешкевич. М.: Физматлит, 2014. 404 с.

- Описание материально-технического обеспечения.

- Учебная аудитория с мультимедийным проектором для проведения лекционных занятий.
- Ноутбук для записи и демонстрации презентаций.
- Доступ в Интернет.

9. Соответствие результатов обучения по данному элементу ОПОП результатам освоения ОПОП указано в общей характеристике ОПОП.

10. Язык преподавания: русский.

11. Преподаватели:

Доцент кафедры физики и геофизики, кандидат физико-математических наук Павел Анатольевич Французов.

Старший преподаватель кафедры физики и геофизики, руководитель образовательной программы по направлению подготовки 03.03.02 «Физика» Андрей Валерьевич Сулимов.

12. Автор программы:

Старший преподаватель кафедры физики и геофизики, руководитель образовательной программы по направлению подготовки 03.03.02 «Физика» Андрей Валерьевич Сулимов.

ОФОРМЛЕНИЕ ЭКЗАМЕНАЦИОННОГО БИЛЕТА ДЛЯ ПРОМЕЖУТОЧНОЙ И ИТОГОВОЙ АТТЕСТАЦИИ, ПРОВОДИМОЙ В ФОРМЕ УСТНОГО ЭКЗАМЕНА

Формат (в зависимости от количества вопросов, наличия или отсутствия задач и т.п.) A-5 или A-6

ФИЛИАЛ МОСКОВСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА имени М.В. ЛОМОНОСОВА в г. СЕВАСТОПОЛЕ
Направление 05.03.02 География
(шифр (шифры) и название (названия) направления (направлений) подготовки)
Учебная дисциплина Физика
Семестр <u>3</u>
Экзаменационный билет № 1
1. Системы отсчета. Траектория. Закон движения. Путь, перемещение, скорость, ускорение. Нормальное и тангенциальное ускорения. Угловая скорость и угловое ускорение.
2. Понятие об электростатическом поле и электрическом заряде. Закон Кулона. Напряженность. Принцип суперпозиции.
3. Законы геометрической оптики и условия их применимости. Понятие показателя преломления.
Утверждено на заседании кафедры, протокол № от «» 20 г.
Зав. кафедрой (Ф.И.О)
Преподаватель (Ф.И.О.)